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Abstract 1 

Urbanization, accompanied by the creation of roads, pavements, and sidewalks creates an environment where there 2 

is limited infiltration capacity, leaving metropolitan areas especially vulnerable during intense rain events. 3 

Furthermore, within an urban setting, there is spatial variability, as certain areas, owing to location, topography, land 4 

feature conditions, population and physical attributes or precipitation patterns, are more prone to flood damages. To 5 

detect neighborhoods with increased flood risk, crowdsourced data, which is the consolidation of eyewitness 6 

accounts, affords particular value. With an intent to understand how factors affect the spatial variability of street 7 

flooding, the Random Forest regression machine learning algorithm is employed, where the 311 street flooding 8 

reports of New York City (NYC) serve as the response, while the explanatory variables include topographic and 9 

land feature, physical and population dynamics, locational, infrastructural, and climatic influences. This study also 10 

analyzes socio-economic variables as predictors, as to allow for better insight into potential biases within the NYC 11 

311 crowdsourced platform. It is found that catch basin complaints have overwhelmingly the greatest predictor 12 

importance, at 41%, almost sixfold higher than that of the second highest ranked predictor, slope, at 6.7%. Thus, 13 

NYC has an apparent issue with debris blocking the basins, and this may be remediated by increased cleaning efforts 14 

or public awareness to maintain clear streets, particularly during forecasted rain events. Furthermore, more than a 15 

third of the top predictors are land feature and topographical conditions, with building characteristics dominating the 16 

category. Often excluded in urban flood models, building effects, with a combined total importance of 11.7%, have 17 

greater significance than commonly considered flooding factors, such as percent impervious cover or elevation. 18 

Another major finding is the significance of the ‘commuters who drive alone’ variable, which alerts to the prospect 19 

of more reports being filed by those more affected by street flooding, as opposed to reflecting the actual occurrence 20 

of flooding (more reports being filed by those who drive on flooded roads versus those who do not). Overall, the 21 

leading contribution of this study is the identification of the top flooding factors in NYC, along with the presentation 22 

of their specific impacts towards street flooding variability among zip codes.  23 

Highlights 24 

• Catch basin complaints have the largest significance towards street flooding report variability. 25 

• Building factors, often neglected in urban flood models, are found to have a greater effect on the spatial 26 

variability of street flooding than variables, such as elevation and percent of impervious cover. 27 

• There is a degree of bias in the NYC 311 platform, especially in regards to commuters who drive to work. 28 

 29 

1 Introduction 30 

 31 

     Perilous situations arise when urban flooding occurs. Posing a serious threat to life, rainwater, unable to enter the 32 

drainage network, ascends to considerable levels, overflowing the streets and sidewalks. Subsequently, individuals, 33 

unprepared for the flooding event, may drown in submerged basements or vehicles, become carried away by the 34 

waters, or endure fatal injuries by collapsed buildings and fallen trees. The devastation following Hurricane Ida 35 

(known as the post-tropical depression Ida) is a recent example of the human endangerment by urban flooding. The 36 

heavy downpour of the post-tropical depression resulted in 91 reported fatalities across nine states (Hanchey et al., 37 

2021), including 13 New York City (NYC) area death (Plumer, 2021) s. In addition to this potential loss of life, 38 

urban flooding incurs substantial financial strain. During a flood event, widespread damage is sustained upon 39 

structures, train systems, electrical systems, and more, bringing forth extensive costs to repair. For instance, there 40 
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was significant localized disruption of the NYC subway system and road transportation network during Ida; indeed, 41 

the weather disaster incurred one of highest recorded insurance losses in the U.S. at $36 billion (Aon, 2021). 42 

Moreover, the Federal Emergency Management Agency (FEMA) states that the combined urban flooding expenses 43 

for NYC and New Orleans metropolitan areas, over a 10-year period, totaled $10 billion (National Academies of 44 

Sciences, Engineering, 2019). Such high intensity and high total rainfall events are expected to become more 45 

frequent in a changing climate, and the juxtaposition of their space-time structure with the urban landscape and 46 

drainage systems (accounting for their reduced capacity due to blockages) determines the ultimate exposure of 47 

population and assets to flooding. Thus, due to the human and economic consequences of urban flooding, it is 48 

essential to identify areas of high flood risk as to allow for preventive measures. 49 

     Currently, there are models that forecast flash floods. In the United States, one of the most notable models is that 50 

by the National Weather Service (NWS). When there is a high intensity rainstorm or rainfall of sufficient duration 51 

that poses a flooding threat, the NWS will issue a flash flood watch or warning for the metropolitan area. Yet, the 52 

warning is based on observed heavy rainfall (NWS, 2022b), and it does not take into account land surface conditions 53 

or the drainage network. However, the NWS does offer a Flash Flood Guidance (FFG), which incorporates soil and 54 

streamflow conditions (NWS, 2022a). In addition, in a city such as NYC, which encompasses 800 square kilometers 55 

(United States Census Bureau, 2012), a warning system with more localized prediction will have greater utility. For 56 

instance, it may be difficult for all NYC basement apartment residents to vacate during a city-wide flash flood 57 

warning. However, if predicted at a finer spatial scale, for example, at the zip code level, the residents of the 58 

forewarned areas, perceiving a specific threat to their locations, may consider preventative measures, such as 59 

seeking shelter above ground. Moreover, in NYC, it has been shown that there is spatial variability in the occurrence 60 

of street flooding, where different regions may be more flood prone (Agonafir et al., 2021). Further, extreme 61 

rainfall, especially at the shorter durations, has considerable spatial variability (Hamidi et al., 2017). Thus, there 62 

remains a need to pinpoint problem areas within the urban domain. 63 

     Street flooding is influenced by a multitude of factors. First, there is the climatic factor. Precipitation, especially 64 

rainfall, is the major contributor, where an intense downpour of rain or rainfall for a long duration may overwhelm 65 

the drainage system, causing flooding (Sharif et al., 2006). Then, there are the topographical and land feature 66 

variables associated with flood risk, and these characteristics include the number of buildings, amount of impervious 67 
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cover, slope, and elevation (Bruwier et al., 2020; Chang et al., 2015; Leandro et al., 2016; S.V. et al., 2015; X. Wang 68 

et al., 2019a). In addition, there are also engineering interventions, such as green roof installations, which may 69 

influence the ponding of water (Dietz, 2007), reduce peak runoff and impact the distribution of water resources 70 

(Asadieh & Krakauer, 2016). Finally, urban flooding research may examine infrastructural characteristics and 71 

population dynamics. For instance, the location and density of catch basins may impact water paths, and the 72 

concentration of people in an area may have an impact on the maintenance of the basins. Thus, there are many types 73 

of attributes within an urban environment which may affect the occurrence of flooding. 74 

     To evaluate the relative degree of flooding effect from each variable, the application of crowdsourced data has 75 

prospect. Crowdsourcing, a feature of social engagement that bridges the gap between researchers and data (Hedges 76 

& Dunn, 2018), often via an Internet platform, has been applied in numerous flood analyses and applications (Dede 77 

et al., 2019; Helmrich et al., 2021; Sadler et al., 2018; R. Q. Wang et al., 2018). For instance, utilizing Twitter, a 78 

flood detection platform in Indonesia, PetaJakarta, imports the flood-related tweets of residents to create real-time 79 

flood maps (See, 2019). Specifically in NYC, there is a crowdsourced platform, referred to as 311, where residents 80 

file reports of observed street flooding or infrastructural issues, and the locations of reports are recorded and 81 

available to the public (Minkoff, 2015). Furthermore, the NYC 311 database has been used in prior urban flood 82 

studies (Kelleher & McPhillips, 2020; Smith & Rodriguez, 2017; Agonafir et al., 2022). In Kelleher and McPhillips, 83 

311 flooding reports were used to assess the impact of topographic wetness index and sink depth (Kelleher & 84 

McPhillips, 2020). Agonafir et al. examined the infrastructural predictors of NYC street flooding (Agonafir et al., 85 

2021). If statistical learning tools, such as machine learning techniques, are utilized, then a relationship between 86 

each factor and the gathered crowdsourced accounts may be established, thereby providing illumination on the 87 

extent of the factor’s impact. 88 

     Nonetheless, citizen generated information is potentially influenced by subsidiary motivations of the respondents. 89 

Some studies have shown crowdsourced projects to be biased, and despite being a platform open to the public, a 90 

small segment of the population may comprise a large portion of the responses (Basiri et al., 2019; Comber et al., 91 

2016; Pak et al., 2017). For instance, in a Belgium-based platform, where residents report structural issues within 92 

their neighborhoods, Pak et al. found low-income groups were marginalized. As such, an exploration into the 93 

demographical differences may lend insight into the behavior and proclivities of participation (Dixon et al., 2021; 94 
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Moreno et al., 2015; Zhao & Zhu, 2014). Once participant motivation is discovered, the data may be curated to 95 

eliminate or minimize noise (Barbier et al., 2012). Therefore, analyzing potential outliers in crowdsourced data may 96 

optimize results and aid in the development of flood prediction models. 97 

     This paper presents an evaluation of the land and surface features, physical and population dynamics, climatic, 98 

and socio-demographic variables, via a Random Forest (RF) regression model, to discover the predictors of 99 

importance for NYC street flooding spatial variability. There are other machine learning algorithms which assess 100 

predictor effect. For instance, there is the highly regarded Extreme Gradient Boosting (XGBoost), an extension of 101 

the gradient descent methodology, which accommodates missing values (Rusdah & Murfi, 2020) and has an 102 

accuracy comparable with RF (Huang et al., 2020). However, XGBoost is not as resilient to noise, and consequently, 103 

it overfits (AlThuwaynee et al., 2021; Xu & Wang, 2019). RF, a Decision-Tree algorithm, is an ideal choice, as it 104 

also works well with missing values and datasets with a large number of predictor variables, of which only a fraction 105 

may actually be related to the response variable  (Ali et al., 2012; Speiser et al., 2019).  Moreover, RF functions 106 

effectively with outliers, and shows less overfitting than many algorithms (Liu et al., 2012; Rodriguez-Galiano et al., 107 

2012).  108 

     This study hypothesizes that physical differences, such as precipitation pattern, percent impervious cover, slope, 109 

elevation, and the presence of buildings, affecting the natural processes of infiltration, have major contribution in 110 

street flood occurrence. To provide a holistic presentation, this paper also considers how the demographic (physical, 111 

financial, and behavioral) characteristics of the residents, affecting proclivity towards addressing concerns within a 112 

crowdsourced platform, has contribution towards street flood reporting. By the novel inclusion of the socio-113 

economic variables, causes of potential bias are illustrated, and this allowance of relative importance comparisons 114 

between direct flooding factors and socio-economic variables give the findings more credence. Thus, serious 115 

consideration may be given to the flooding factors which prevail, despite the background of those reporting street 116 

flooding. In the analysis, total 311 street flooding reports, aggregated per zip code, are taken as the response 117 

variable. Physical and population features, precipitation variables, land feature and topographical conditions, 118 

locational and socio-demographic factors, serving as predictors, are prescreened by the RF model, where only the 119 

top 15 variables are elected. With the top 15 variables and total 311 catch basin reports serving as explanatory 120 

variables and street flooding reports serving as the response, 50 RF simulations are conducted, and the median 121 
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relative importance for each predictor is then computed. With the presentation of these leading explanatory factors, 122 

an understanding into the spatial variability of NYC street flooding reports is achieved.  123 

     A purpose of this study is to extend the results of Understanding New York City Street Flooding through 311 124 

Complaints (Agonafir et al., 2021), which had examined the infrastructural predictors of NYC street flooding. The 125 

prior analysis, utilizing a weekly time-series via negative binomial generalized regression, discovered spatial 126 

variabilities within NYC. Specifically, the frequency of street flooding complaints was found to vary per zip code; in 127 

addition, it was revealed that zip codes differed in climatic and infrastructural predictor significance. This study 128 

builds upon these findings by serializing the spatial units (zip codes) [as opposed to serializing the time unit], as to 129 

discover the relative importance of each factor in relation to total street flooding complaints. Furthermore, this paper 130 

delves into the unexplored aspects of Agonafir et al. by including socio-demographic variables, which may have 131 

influenced the crowdsourced data. By extending the conclusions of Agonafir et al., this study aims to achieve a 132 

holistic view of NYC street flooding, allowing for broader implications towards other metropolitan areas. 133 

     The paper is structured in the following manner. In Section 2, the study area, input data, and model background 134 

are described. The study area, NYC, is discussed, with a focus on the urban and economic characteristics. The socio-135 

demographic, land feature and topographic, climatic, physical and population variables are detailed. In addition, a 136 

description of the NYC 311 crowdsourced platform is provided. The RF model is also briefly introduced. In Section 137 

3, the methodology is outlined, including data processing. The specific details of the RF regressions are set forth, 138 

with a diagram depicting each model and the factors serving as inputs. In Section 4, the results are presented. Then, 139 

Section 5 proceeds with a discussion of the results and their implications. Lastly, Section 6 concludes with a 140 

summary of the findings and their unique contribution towards resolving issues within urban flood research. 141 

2 Study Area, Data and Model Background 142 

 143 

2.1 Study Area 144 

     Located along the northeastern coast of the United States, NYC, distinctly impervious, populous, and dense, 145 

manifests the urban metropolitan (Impact of NYW Bonds, n.d.; United States Census Bureau, 2012). Additionally, as 146 

it contributes the largest portion of gross domestic product (GDP), at approximately $1.8 trillion annually (Bureau of 147 

Economic Analysis, 2021), the economic dynamics within NYC may have overarching extent, nationally. Thus, due 148 

to its urban features and economic impact, NYC is chosen as an ideal study area to investigate urban flood factors. 149 
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Furthermore, in NYC, essential details, such as the locations and widths of stormwater inlet drains and digitized 150 

maps of the sewer network, are publicly unavailable. As such, flood modeling is challenging, and alternative 151 

methods of assessing problems within the infrastructure are desired. Therefore, this study, incorporating the 152 

infrastructural issues and components, has direct utility to the city. 153 

2.2 Input Data 154 

2.2.1 NYC 311 Platform 155 

 156 

     NYC 311 is a service which affords residents and visitors the opportunity to file reports concerning a wide-range 157 

of local problems, from noise complaints to sewer-related issues (City of New York, 2022a). The complaints may be 158 

registered via telephone or website. For researchers, the data is accessible via the NYC Open Data website: 159 

data.cityofnewyork.us. Available from January 1, 2010 to the present, each report includes a date and time and the 160 

latitude and longitude coordinates of the location where the issue has taken place. Two sewer-related complaints are 161 

of interest to this study: Street Flooding (SF) and Catch Basin (CB). SF complaints will illuminate and provide a 162 

workable metric for the occurrence of street flooding, and CB complaints provide insight into an infrastructural 163 

causal factor, as when catch basins are unable to receive rainwater, either due to blockage or malformation, surface 164 

water level increases on the streets. For SF, the complainant may report observed flooding or ponding on a street 165 

(City of New York, 2022e). For CB, the complainant may report issues with the catch basins, such as clogging or 166 

defective grates (City of New York, 2022b). 167 

2.2.2 Radar Data 168 

 169 

     Stage IV data, at 4 km polar-stereographic grids, are available at the National Center for Atmospheric Research 170 

(NCAR)/Earth Observing Laboratory (EOL) website, where hourly, 6-hourly and 24-hourly analyses may be 171 

retrieved (Du, 2011). The data is a mosaic, comprised of radar and gauge estimates, thereby benefiting from the 172 

temporal and spatial resolutions of radar (Thorndahl et al., 2017) and the direct measurement capabilities of gauges 173 

(Serrano, 2010). Snow measurements are incorporated; however, due to instrumental error at some gauge locations, 174 

snow values may not be accurately reflected by the Multisensor Precipitation Estimates (MPE) algorithm (Du, 175 

2011). Subsequently, the precipitation values of the Stage IV dataset are considered as rainfall estimates (Hamidi et 176 

al., 2017). 177 
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2.2.3 Socio-Demographic, Land, and Population Data 178 

 179 

     The socio-demographic data was taken from the NYC Geodatabase, released by Baruch College, and based upon 180 

the 2014-2018 American Community Survey (ACS) data and the 2010 census demographic data and ZIP Code 181 

Tabulation Areas (Baruch College, 2021). There were 121 socio-demographic variables, separated per zip code 182 

(over 174 NYC zip codes), with the following categories: Households by Type, Fertility, School Enrollment, 183 

Educational Attainment, Residence 1 Year Ago, U.S. Citizenship Status, Language Spoken at Home, Employment 184 

Status, Commuting to Work, Income and Benefits, Housing Occupancy, Housing Tenure, Housing Value, Mortgage 185 

Status, Gross Rent, Sex and Age, Race, Hispanic or Latino and Race, Citizen – Voting Age Population, Zip Code 186 

ID.  187 

     The land feature, topography, and population data were available in shapefiles, downloaded from NYC Open 188 

Data website: https://opendata.cityofnewyork.us/. NYC Open Data is a database provided by the City of New York. 189 

2.3 Model Background 190 

2.3.1 Random Forest 191 

 192 

     To measure the relative importance of each variable in an analysis, RF regression is effective. The technique has 193 

been used in multiple hydrological analyses (Loos & Elsenbeer, 2011; Z. Wang et al., 2015; Yang et al., 2016), and 194 

specifically, in flood studies (Albers et al., 2015; Lin et al., 2021). Introduced in 2001 by Leo Breiman, RF is a 195 

machine learning algorithm, suitable for handling large data sets (Breiman, 2001; Liaw & Wiener, 2002; Sadler et 196 

al., 2018). A bagged ensemble of prediction trees is trained to estimate predictor importance, with the tree learner 197 

being defined by setting the parameters to name-value pair arguments (MathWorks, 2022). The algorithm 198 

experiences a type of learning over the quantity of regression trees (Breiman, 2001). Then, the random forest 199 

predictor is determined by taking the average value over the number of grown trees (Liaw & Wiener, 2002). The 200 

algorithm provides the relative importance of the input variables.  201 

2.3.2 Predictor Details  202 

 203 

     When considering the variables to input, factors affecting the hydrological processes necessary for the extraction 204 

of runoff are considered. Regarding the variety of the land surface, infiltration has significant effect on flooding. An 205 

important component of the hydrologic cycle, infiltration is the absorption of water by the soils during a rain event. 206 
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Impermeable materials, such as concrete, cement, brick, stone, and tile, where there is no infiltration capacity, leave 207 

water unable to be abstracted into the soil (S.V. et al., 2015). Therefore, the percent of impervious cover per zip 208 

code is included as a variable, as it decreases infiltration, thereby increasing runoff. A map displaying the average 209 

impervious cover in NYC, per zip code is shown in Fig 1a. 210 

     Aside from land surface, topographical factors, such as elevation and slope, also affect the behavior of runoff. It 211 

is reasoned that water flows along a slope; thus, in comparison to flat surfaces, water is less able to stand and rise to 212 

the significant levels (Rahmati et al., 2020). Indeed, it has been shown that a steeper slope leads to lower peaks in 213 

stored runoff volume and lower mean water depth (Bruwier et al., 2020). In regards to elevation, despite the 214 

possibility of increased precipitation at higher elevated areas (Novikov, 1981), the areas of low elevation surrounded 215 

by higher elevated areas are at greater flood susceptibility (Bado & Bationo, 2018; Ouma & Tateishi, 2014). It may 216 

be theorized that low areas are more flood prone, as they are at the bottom of a sloped surface, where the water, 217 

ultimately, is able to pond (X. Wang et al., 2019b). Thus, influencing the ponding of water during rainfall, the mean 218 

percent rise (slope) and mean elevation are inputs for the model. The maps of mean elevation and slope are shown in 219 

Fig 1b and Fig 1c, respectively. 220 

     Furthermore, urban features, specifically buildings, play a role in flooding. Buildings, including their respective 221 

elevations, have the added impact of changing the geometry and path of the natural flow (Chang et al., 2015; 222 

Leandro et al., 2016). In addition, the rooftops of buildings, considered impervious surfaces, contribute to greater 223 

amounts of effective rainfall. Thus, roofs, and their respective drainage network and gullies, should be considered 224 

for urban flood modeling (Chang et al., 2015; Leandro et al., 2016). It is also worth noting that some buildings have 225 

green roof installations, which offset the increase in runoff, allowing for infiltration. Highlighting this aspect, in a 226 

study by Dietz, green roof implementations had been found to abstract 63% of rainfall (Dietz, 2007). In NYC, where 227 

a green roof is defined as a layer of vegetation comprised of waterproofing, a root barrier, water retention and 228 

drainage, a growing medium, and plants, there are incentives and mandates to ensure their installations (City of New 229 

York, 2021a, City of New York, 2021b, City of New York, 2021c). For NYC, maps displaying the number of 230 

buildings per zip are shown in Fig 1d, the sum of the areas of each building footprint within each zip code are shown 231 

in Fig 1e, the sum of the areas of each building footprint within each zip code per zip code area are shown in Fig 1f. 232 
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 233 

Fig 1 Maps displaying NYC land feature and topographical information and 311 SF frequency Fig 1a shows the 234 

percent impervious cover within each zip code Fig 1b shows the mean elevation in meters of each zip code Fig 1c 235 

shows the mean percent rise (slope) of each zip code Fig 1d shows the sum of the number of buildings within each 236 

zip code Fig 1e shows the sum of the building footprint areas in square meters within each zip code Fig 1f shows the 237 

sum of the building footprint areas per zip code area for each zip code Fig 1g shows the total SF complaints per zip 238 

code area in square kilometers 239 

     Increased Precipitation and Blocked Catch Basin Grates are distinguished by the NYC Department of 240 

Environmental Protection (DEP) as leading causes of street flooding in NYC (City of New York, 2022c). 241 

Precipitation, considered either rain, hail, or snow, is the primary driver of urban flooding. Specifically, rainfall is 242 

the major cause of flooding in urban cities, and in urban flooding model development, generally, total rainfall 243 

amount or rainfall intensity are used as inputs (Qin et al., 2013; Schmitt et al., 2004; Sharif et al., 2006). Concerning 244 

clogged catch basins, the basins are the inlets to the underground stormwater drains. During heavy rainfall, at times, 245 

debris, such as trash, construction waste, or leaves, are pushed on top of the catch basin grates, preventing rainwater 246 

from entering the sewer system. The water then ponds and rises to levels, considered as flooding. Thus, in 247 

accordance with the DEP and flood studies, the infrastructural issue of catch basin clogging, and the climatic cause 248 

of precipitation are considered.  249 
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     Finally, as a measure to detect skewing of the 311 sewer-related reports, where background characteristics of the 250 

residents may affect inclinations to report, socio-demographical variables are included in the model. These factors 251 

do not physically influence street flooding; thus, they serve as an investigative technique to detect the accuracy of 252 

the 311 reports. For instance, two zip codes may have the same street flooding magnitude; yet, the zip code with the 253 

higher demographical bias may have more reports. Hence, if a socio-demographic variable is selected as a predictor, 254 

then in the areas where the particular variable trends, a greater frequency of SF reporting may not actually reflect a 255 

greater occurrence.  256 

3 Data Processing and Methodology 257 

 258 

     The 311 SF and CB complaints were acquired from the NYC Open Data website. The reports from January 1, 259 

2010 through December 31, 2019 were employed. The data was then geo-aggregated to the zip code level, with 174 260 

zip codes being used for analysis. A measure, processing for uniqueness, was taken to evaluate whether a 261 

complainant was reporting more than once daily. Using the Distinct function, provided by R, the latitude and 262 

longitude coordinates of each complaint was examined. Of the raw 311 data, over the ten-year period, it was 263 

determined that 82,191 of the 85,607 CB reports (96.0%) and 25,378 of the 25,574 SF (99.2%) reports were unique. 264 

     Regarding the precipitation data, hourly totals from January 1, 2010 through December 31, 2019, were ordered 265 

from the EOL database. To analyze at the zip code level, radar points within the NYC boundary were extracted, and 266 

the Spatial Join, an ArcGIS analysis tool, was employed. By the method, a zip code was assigned to the radar point 267 

closest to its centroid. After the geoprocessing, there were a total of 40 radar points in NYC, and by applying the 268 

inverse distance weighting method, precipitation values were disaggregated to the 174 zip codes of this study. 269 

Firstly, concerning the short duration rainfall intensity variables, the mean hourly precipitation amounts of the non-270 

zero values were calculated per zip code (mm/hour) and designated as NZMN (non-zero rainfall mean); in addition, 271 

of the non-zero values for the hourly data, the standard deviation, skewness, and kurtosis were determined and 272 

signified as NZSD (non-zero rainfall standard deviation), NZSW (non-zero rainfall skewness), and NZKT (non-zero 273 

rainfall kurtosis), respectively. Secondly, concerning the longer duration rainfall, daily totals were examined. The 274 

95th percentile values of the daily totals per zip code were computed and represented as PERC; also, from the daily 275 

totals, the mean and max length of the wet spell days were determined and represented by the parameters, MNWTS 276 
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(mean wet spell length) and MXWTS (maximum wet spell length), respectively. Therefore, for the precipitation 277 

variables, hourly rainfall intensity and daily total statistics were utilized in the RF models. 278 

     Zip code, elevation points, impervious cover, number of buildings, building footprints, DEP green roof 279 

infrastructure, number of catch basin and borough shapefiles were downloaded from NYC Open Data and processed 280 

via ArcGIS Pro. The percent of impervious cover, population and area per zip code were provided within the Zip 281 

code shapefile. Mean elevation, mean slope (percent rise), and the centroid (x and y coordinates) per zip code were 282 

calculated with the utilization of ArcGIS Pro calculation tools. For building footprints, the area per footprint was 283 

calculated and the sum of the areas of each building footprint within each zip code was determined. Similarly, the 284 

area of the green roof installations, as listed within the DEP, was calculated with the sum for each zip code 285 

determined. The variables derived from the above-described processes are the following: mean percent rise (SLPE), 286 

mean elevation (ELEV), total area of green infrastructure (GREEN), catch basins per unit area (CBPA), population 287 

(POP), x coordinate of the centroid (XCOR), y coordinate of the centroid (YCOR), zip code area (AREA), 288 

population density (PPDN), percent of impervious cover (IMPV), number of buildings (BLD), the sum of the 289 

building footprints (FP), the sum of the building footprints per unit area (FPBD). 290 

     There were 121 socio-demographic variables per zip code provided, with categories such as educational 291 

attainment, household type, housing ownership profiles, sex, age, race, commuter status and income. The complete 292 

list of socio-demographic variables is shown in Appendix A.  293 

     For the determination of variable importance, the RF regression model was employed. MATLAB R2021a was 294 

utilized to perform the analysis. First, the tree learner was defined:  295 

• All predictor variables were set to be used at each node.  296 

• The predictor-selection technique was set to the interaction test, as it is the recommended method for 297 

analysis when the objective is determining predictor importance (Loh, 2004). In addition, it accommodates 298 

the possibility of local interactions between predictor variables during split selection (Loh, 2004).  299 

• Surrogate splits were specified as to aid accuracy. 300 

Once the template tree was established, a bagged regression ensemble model was created by the following inputs: 301 

• The name-value pair argument was set to bootstrap aggregation. 302 
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• A bagged ensemble of 500 prediction trees were specified.  303 

Out-of-Bag predictions (OOB) were then determined, and the explained variance, R2, was calculated by the 304 

correlation between observed and predicted values of the response variable. Lastly, the 305 

oobPermutedPredictorImportance function was used, which provides Out-of-Bag, Predictor Importance Estimates 306 

by Permutation (impOOB). The impOOB values were also normalized as to scale the predictor importance value 307 

from 0 to 1. A more detailed description of the methodology (as implemented in the MATLAB R2021a Statistics 308 

and Machine Learning Toolbox) is provided in Appendix B. 309 

     In this study, there were multiple processes. As a preliminary step, before the set-up of the models, all variables 310 

were run via the Random Forest regression simulations (total of 142 variables), and it was seen that CB dominated 311 

the predictors, such that CB represented a median 22% of the relative importance, and the other variables 312 

represented a median 3% or lower relative importance, each. Thus, in order to clearly evaluate the effect of the other 313 

variables, it was decided that there would be two separate models, Model 1, featuring only the topographic, land 314 

feature, physical and population dynamics, and locational elements, and Model 2, where the infrastructural variable 315 

of CB would be included. Henceforth, for Model 1, there was a prescreening process, where SF reports served as the 316 

response variable, and the predictor variables were the land feature and socio-demographic variables (total of 141 317 

variables). The RF regression simulation was run 50 times, and the median of the predictor importance values were 318 

determined. The R2 is 0.58, and the results are shown in Appendix Table C.1. The purpose of the prescreening 319 

process was to allow the machine learning algorithm to filter the important variables. This prescreening procedure 320 

was implemented as a more suitable alternative than allowing a selection of variables by expert opinion. It was opted 321 

for the top 15 importance variables, as it serves as a tradeoff between too few and too many explanatory variables. 322 

The additional importance after the top 15 is less that 1%, and the total importance of the top 15 variables was in 323 

excess of 40%. Therefore, for the Model 1 results, the RF simulations were run again, but only with the 15 324 

predictors shown to have highest importance. The median R2 were also calculated from the 50 simulations of those 325 

15 predictors. Next, as it was shown that CB reports influence SF reports in Agonafir et al., Model 2 repeats the 326 

process, with CB reports added as a predictor variable, along with the top 15 predictors of the initial RF analysis 327 

(i.e., from Model 1). Additionally, to gain additional insight into how the variables affect the crowd-sourced data, 328 

Model 3 was developed, where RF regression simulations were conducted with CB serving as the response variable 329 
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and the explanatory variables being the same 141 variables as in the original regression. Again, to reduce noise, the 330 

RF simulations were repeated, but with the highest ranked 15 predictors.  Model 3 serves as a background 331 

information about CB, an important SF determinant, and the results are listed in Appendix C. All models are 332 

depicted in Fig 2. 333 

 334 

Fig 2 A diagram depicting the three RF regression models and the input variable types. In parenthesis are the 335 

number of variables within each variable category.  336 
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4 Results  337 

 338 

4.1 Model 1: SF and Predictor Importance of the Land Features and Socio-demographic Variables 339 

      The top 15 predictors are the following: Commuting: drove alone (COM02), YCOR, BLD, AREA, SLPE, 340 

Employment status: armed forces (EMP06), Mortgage Status: mortgage (MORT02), FP, Housing tenure: Owner 341 

(HTEN02), ELEV, PPDN, IMPV, Residence 1 Year Prior: Abroad (RES04), FPBD, and XCOR. Running 50 342 

simulations of the top 15 predictors only, the median R2 is found to be 0.63, and box plots of the variables of each 343 

simulation are shown in Fig 3 and listed in Table 1. 344 

Abbreviation Variable Percent 

Importance 

COM02 COMMUTING TO WORK - Workers 16 years and over - Car, truck, or van -- 

drove alone 

17.79 

YCOR Centroid of y coordinate 10.38 

BLD Number of buildings 9.43 

AREA Area 8.62 

SLPE Slope - mean percent rise 7.61 

EMP06 EMPLOYMENT STATUS - Population 16 years and over - In labor force - 

Armed Forces 

6.58 

MORT02 MORTGAGE STATUS - Owner-occupied units - Housing units with a mortgage 6.12 

FP Sum of the building footprints 6.10 

HTEN02 HOUSING TENURE - Occupied housing units - Owner-occupied 5.13 

ELEV Mean elevation 5.10 

PPDN Population Density 4.04 

IMPV Percent of Impervious Cover 3.68 

RES04 RESIDENCE 1 YEAR AGO - Population 1 year and over - Abroad 3.32 

FPBD Sum of the building footprints per unit area 3.22 

XCOR Centroid of x coordinate 3.11 

R2 is 0.63 
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Table 1 The median R2 and relative importance values, resulting from 50 simulations of the RF regression for only 345 

the top 15 ranked predictors, with SF serving as the response variable (Model 1) 346 

 347 

 348 

Fig 3 Box plots of the 50 RF simulations of the top 15 ranked variables only, with SF serving as the response. These 349 

15 variables explain up to 63% of the spatial variability (The R2 is 0.63). The expanded version of the acronyms is 350 

shown in Table 1.   351 

     Of the top categories, five socio-demographic categories were shown: Commuting to Work, Employment Status, 352 

Mortgage Status, Housing Tenure, and Residence 1 Year Ago. The Commuting to Work category includes remote 353 

workers, drivers, carpoolers, and those who take public transportation; Employment Status differentiates those who 354 

are either employed in armed forces or civilian forces or unemployed; Mortgage Status designates between those 355 

who have a mortgage on their properties and those who do not; Housing Tenure separates those who rent and those 356 

who own homes; lastly, the status of the Residence 1 Year Ago quantifies the population who lived in the same 357 

house, different house, or abroad the year before. 358 
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4.2 Model 2: SF and The Top 15 Land Feature and Socio-demographic Predictors including CB reports as 359 

a Predictor 360 

     Given that CB is an important variable considered by NYC local planners (City of New York, 2022c), total CB 361 

reports per zip code were added as a predictor, along with the resultant 15 top predictors of Model 1. With SF 362 

serving as the response, the median R2 of the 50 RF simulation runs increases from 0.63 to 0.71. The RF results 363 

show CB as the most important predictor, at 41.13%, and it dominates the ratio of importance. The second most 364 

contributing predictor is SLPE, at 6.73%, and of the RF analyses, this represents the largest delta difference, at 365 

34.40%. When only the top 15 predictors were run against SF in Model 1, slope previously obtained a 7.61% 366 

relative importance. Furthermore, once CB was added, other predictors experienced decreases in importance, when 367 

compared to Model 1 results. These include COM02, YCOR, BLD, and AREA, which decreased from 17.79% to 368 

6.56%, 10.38% to 6.19%, 9.43% to 3.47%; and 8.62% to 5.12%, respectively. Box plots of the variables of each 369 

simulation are shown in Fig 4 and listed in Table 2. As an additional illustration, scatter plots for each predictor of 370 

Model 2 are given in Fig 5.  371 

Abbreviation Variable Percent 

Importance 

CB Total catch basin complaints 41.13 

SLPE Slope - mean percent rise 6.73 

COM02 COMMUTING TO WORK - Workers 16 years and over - Car, truck, or van -- 

drove alone 

6.56 

YCOR Centroid of y coordinate (latitude) 6.19 

AREA Area 5.12 

FPBD Sum of the building footprints per unit area 4.79 

EMP06 EMPLOYMENT STATUS - Population 16 years and over - In labor force - 

Armed Forces 

4.53 

IMPV Percent of Impervious Cover 4.37 

BLD Number of buildings 3.47 

RES04 RESIDENCE 1 YEAR AGO - Population 1 year and over - Abroad 3.44 
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FP Sum of the building footprints 3.43 

MORT02 MORTGAGE STATUS - Owner-occupied units - Housing units with a mortgage 3.40 

PPDN Population Density 3.29 

ELEV Mean elevation 2.12 

HTEN02 HOUSING TENURE - Occupied housing units - Owner-occupied 1.52 

XCOR Centroid of x coordinate (longitude) 0.02 

R2 is 0.71 

Table 2 The median R2 and relative importance values, resulting from 50 simulations of the RF regression for only 372 

the top 15 ranked predictors and CB, with SF serving as the response variable (Model 2) 373 

 374 

 375 

Fig 4 Box plots of the 50 RF simulations of the top 15 ranked variables and CB, with SF serving as the response. 376 

These 16 variables explain up to 73% of the spatial variability (The R2 is 0.73). The expanded version of the 377 

acronyms is shown in Table 1.   378 
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5 Discussion 379 

 380 

     As demonstrated by previous studies, there is spatial variability in SF reports within NYC. Compiling the factors 381 

in each zip code as predictors and running RF regression simulations against the total SF complaints per zip code, 382 

over the course of 174 zip codes, enables insight into which factors have explanatory power for the local differences 383 

in SF reporting. Moreover, the RF regressions also provide percent importance. The valuations of each factor’s 384 

effect allow a perception into an area’s vulnerability based on the physical characteristics it contains; and, with this 385 

knowledge, urban risk assessment may be facilitated. Another advantage of the RF method is the assessment of 386 

predictor effect despite non-linear relationships. As seen in the scatterplots of Figure 5, not all the predictors of the 387 

study have linear relationships with the response; thus, a linear regression or other parametric modeling techniques 388 

would not be appropriate here. It is important to note, however, that, as the analysis is conducted over each zip code, 389 

the RF model results indicate predictors’ importance in regards to spatial variability; thus, while a factor may be a 390 

significant contributor to street flooding (e.g., the temporal distribution of rainfall and intensity), if the values do not 391 

vary greatly per zip code, it will be designated with lower relevance.  392 
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 393 

Fig 5 Scatter plots of the Model 2 predictors. Each dot represents a zip code. For each plot, SF complaints are on the 394 

y-axis, and the predictor is on the x-axis. The predictors are shown in the following: Fig 5a is BLD Fig 5b is FP Fig 395 

5c is SLPE Fig 5d is ELEV Fig 5e is IMPV Fig 5f is FPBD Fig 5g is AREA Fig 5h is YCOR Fig 5i is XCOR Fig 396 

5j is PPDN Fig 5k is COM02 Fig 5l is EMP05 Fig5m is RES04 Fig 5n is MORT02 Fig 5o is HTEN02 Fig 5p is 397 

CB.  398 

 399 
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5.1 Land Feature and Topographical Factors 400 

     The results of this study demonstrate that land features and topography have impact on the reporting of SF. In 401 

Model 1, over a third of the top 15 predictors are feature and surface characteristics. These include BLD (Number of 402 

buildings), FP (Sum of the building footprints), SLPE (Slope – mean percent rise), ELEV (Elevation), IMPV 403 

(Percent of impervious cover), and FPBD (Sum of the building footprints per square area). The totaled percent 404 

importance of the land feature and topographical factors is 35.14%. It is noteworthy that, within this category, the 405 

building factors, BLD, FP, and FPBD, combined, comprise 18.75% percent importance, which is more than the 406 

combined total of SLPE, ELEV, and IMPV at 16.39%. While many urban flood studies and models include 407 

topographical aspects, such as slope and elevation, building factors may be neglected (Lin et al., 2021). Indeed, the 408 

digital elevation model, which includes slope and elevation and often excludes buildings, serves as the basis for a 409 

vast quantity of urban flood models, especially for the 1D (one-dimensional) models (Bulti & Abebe, 2020; el Kadi 410 

Abderrezzak et al., 2009; Sharif et al., 2006). Additionally, given that NYC is currently exploring and implementing 411 

green roofs mandates (City of New York, 2022f), the building factors finding is valuable. A further inference is that 412 

all metropolitans may not be treated equally. For instance, in modeling a city such as NYC, where there is a marked 413 

presence of buildings, the inputs may be weighted differently than when modeling a major city, where, perhaps, 414 

varying elevations is the distinct characteristic. This study brings to light the possibility that not all flooding factors 415 

are universally significant to the same extent. Therefore, the distinguishment of building effects by the RF model 416 

strengthens the importance of their inclusion in future research. 417 

5.2 Physical Characteristics and Population Dynamics 418 

     The physical location of the zip code, the zip code area, and the population density are also factors found to have 419 

effect on regional differences within SF reporting. For Model 1, AREA (area), YCOR (centroid of y coordinate), 420 

PPDN (population density), and XCOR (centroid of the x coordinate) are amongst the top 15 explanatory factors. 421 

The area of the zip code affects the quantity of SF reports, as with a larger geographical encompass, there presents 422 

more opportunity for flooding. Concerning YCOR and XCOR, the factors relate to the location of the zip code, 423 

according to its centroid. Specifically, the YCOR represents latitude (south to north directions), and the XCOR 424 

represents longitude (west to east direction). When viewing Fig 5h, the greater values indicate a northern direction, 425 

and the plot appears to indicate that there are lower complaints in the neighborhoods of northern NYC. The results 426 

strengthen this assertion, as the YCOR has high placement among predictors (10.38% importance in Model 1); thus, 427 
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southern zip codes in NYC are shown to have greater street flooding susceptibility. Next, concerning XCOR, the 428 

higher values indicate a more eastward direction, and there is indication that there may be more street flooding 429 

complaints in the eastern sections of NYC; however, while a top 15 predictor, it is in the lower portion at 3.11% in 430 

Model 1. Thus, a west to east directionality is not as significant. While land feature and topographical conditions 431 

may be similar in zip codes of the same region, and thus, the effect of coordinates in SF reports may be due to these 432 

similarities, there may be additional reasons for geographical location showing effect. For instance, some locations 433 

are susceptible to sea level rise, a causal factor, known to increase flood risk (City of New York, 2022d). Hence, it 434 

may of interest to explore sea level rise in NYC for future studies. Lastly, PPDN has effect. By viewing Fig 5j, it 435 

appears that areas of greater population density have lower complaints. A hypothesis may be that, in NYC, more 436 

sophisticated drainage systems or systems with higher capacities are implemented in areas with a higher 437 

concentration of people; however, more investigation would be needed to substantiate the theory. Overall, the 438 

findings of the first analysis show that the physical and locational attributes, AREA and YCOR, account for 439 

considerable percent importance. When the simulations are run in Model 1, YCOR and AREA have 10.38% and 440 

8.62%, respectively, percent importance. PPDN, on the other hand, remains in the lower portion of the top 15 441 

predictors. Thus, it is seen that the size and location of a zip code have noticeable significance on SF reporting; in 442 

addition, PPDN has effect, but at a smaller extent.  443 

5.3 Climatic Factors 444 

     Decidedly, precipitation is a preliminary cause of urban flooding and a driving force behind SF report filing. As 445 

this study is focusing on the spatial variability of SF reports, the evaluation of the effects of precipitation is 446 

dependent on precipitation pattern dynamics within NYC. In Model 1, neither of the seven rainfall variables present 447 

in the top 15 of predictors. It may be reasoned that rainfall differences within the NYC radar measurements are not 448 

of sufficient significance [in comparison to the other variables] to incur regional street flooding variations. Thus, 449 

precipitation spatial variability is seen to have a low effect on the spatial variability of SF reporting in NYC. 450 

Subsequently, the finding is a useful contribution toward modeling endeavors, as forecasted rainfall amounts may 451 

not suffice when identifying localized areas of increased flooding risk within NYC, as variability among zip codes 452 

appears to be due to other specific conditions within the neighborhood. 453 
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5.4 Socio-demographic Factors 454 

     Socio-demographics have appreciable influence towards the spatial variability of SF reports. Five of the 15 top 455 

predictors are socio-demographic for the Model 1. Specifically, COM02 (commuting to work - drove alone) 456 

comprises the largest percent importance at 17.79%. This variable signifies that the condition of driving to work has 457 

explanatory power towards SF reporting. An inference of this finding is that drivers are more endangered by street 458 

flooding and thus are more likely to file a complaint. Indeed, studies have shown that vehicular-related deaths 459 

comprise the majority of flooding fatalities in the United States (Ashley & Ashley, 2008; Han & Sharif, 2020). 460 

Furthermore, in a city, such as NYC, where certain regions have many subway stations, a large number of 461 

commuters are able to avoid vehicles; hence, they are not imminently confronted by this danger and do not report. 462 

Another possibility for the COM02 showing importance is that in suburban districts, where people drive more, there 463 

may be less sophisticated drainage systems or systems with lower capacities. In this type of instance, the COM02 464 

factor may not directly motivate the variability of SF reports, as it may be a symptom of a different root cause. This 465 

inference is strengthened by the fact that many commuters who drive alone have a work location in a different 466 

borough or zip code. In fact, only 29% of those who work in Manhattan live in Manhattan, where 45% are residents 467 

of outer boroughs (City of New York, 2019). Thus, for instance, if a commuter from Staten Island drives to 468 

Manhattan and observes flooding in Manhattan, the flooding report would be that of the Manhattan location. Yet, 469 

the results show that commuters who drive are reporting flooding in their own zip codes. This gives further credence 470 

that the flooding is, indeed, taking place in their respective neighborhoods. Hence, in the case of the commuter who 471 

traverses zip codes, the bias may exist; however, it may not have a false skew, as the reported location is 472 

representative. Nevertheless, as there is significance with this variable, further research into commuter bias on 473 

crowdsourced flooding data may be beneficial, and an assignment of a weighting metric may be needed.  474 

     Overall, the socio-demographic variables within the top 15 comprise 38.94% of relative importance. In addition 475 

to COM02, homeownership variables, MORT02 (mortgage status - owner-occupied units - housing units with a 476 

mortgage) and HTEN02 (housing tenure - owner-occupied), show impact. Homeowners and homeowners with a 477 

mortgage, have a combined percent importance of 11.25%. The other socio-demographic characteristics include 478 

being employed in the armed service and living abroad the year prior. The connection of these variables warrants 479 

further investigation. Yet, it is seen that the crowdsourced data may be affected by the background and living 480 
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characteristics of those who file, and when utilizing the data in urban flood research, further processing may be 481 

necessary.  482 

5.5 The Influence of Catch Basins 483 

     Catch basins are a primary source for stormwater removal, and thus, blocked inlet drains contribute to street 484 

flooding, as rainwater, unable to infiltrate the impervious streets or enter the sewer system, may only ascend. While 485 

the mechanism of catch basin clogging is apparent, it is essential to assess whether a metropolitan has clogging to 486 

the extent of exasperation. Thus, to examine the effect of clogged catch basin issues in NYC, in Model 2, RF 487 

regressions are utilized, where CB reports are added as a predictor to the top 15 explanatory variables, and SF 488 

reports serve as the response. The results show that CB has 41.03% percent importance, where the second highest 489 

ranked predictor is at 6.73%; thus, in comparison, CB represents an overwhelming portion of significance in 490 

explaining the differences in SF reporting within zip codes. A clogged catch basin signifies a maintenance issue, 491 

where preventive actions, such as clearing the grates, or increasing public awareness, particularly in the advent of a 492 

rain event, would aid in remediation. Moreover, from 2010 to 2019 (the period of this study), the NYC DEP 493 

performed catch basin inspections every one to three years (DEP, 2020). Consequently, a plausible recommendation 494 

may to decrease the time between inspections to improve the issue of catch basin blockages. Therefore, the finding 495 

of CB as a strong predictor may provide direction for city management in flood relief, inspection scheduling and 496 

street cleaning measures.  497 

     Nonetheless, CB reports and SF reports do not hold a 1-to-1 linear relation, as depicted in Figure 6p. For 498 

example, if 750 CB reports are examined on the plot, the range of SF may be anywhere from 100 to almost 400 499 

reports. The reason the relationship is not inherent is that SF and CB may occur independently. This separate 500 

occurrence is well illustrated by the September 1, 2021 urban flooding event from post tropical depression, Ida. The 501 

highest SF complaints, at 31 reports, had only two CB complaints; likewise, the zip code with the highest CB 502 

complaints of 10, had only 2 SF complaints. The disconnection between CB and SF occurred throughout the 503 

majority of zip codes for that day (The scatterplot depicting the SF and CB complaints for the day is in Appendix 504 

Fig D). Thus, a street flooding event is not always caused by a clogged catch basin, especially during high intensity 505 

rainfall days. Likewise, there may be water ponding near a clogged basin, where the streets are not flooded to an 506 
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extent that instigates a SF report. Despite the nonlinearity, in NYC, the clogging of a catch basin does provide 507 

significant explanatory power for the street flooding variability among different neighborhoods. 508 

5.6 The Effect of Zip Code Size 509 

          The results of the RF regressions show that the zip code size appears to have a strong effect. Of the predictors, 510 

it is seen that AREA, BLD, and FP are very significant in all the models of the study. In the simulations of only top 511 

predictors, AREA was ranked in the top five and found to have the relative importance of 8.62% in Model 1. In 512 

Model 2, once CB was added as a predictor, AREA had an importance of 5.12% and was amongst the top 10 513 

predictors. Concerning the building factors, there is a relation with size, as the maps of total area of building 514 

footprints per zip code and total area of building footprints per square area per zip code show contrasting extents of 515 

saturation (See Fig 1e and Fig 1f). Thus, in the consideration that zip code area has influence, a complaint frequency 516 

analysis may be conducted. Per zip code, the SF complaints over the ten-year period is summed and then divided by 517 

the respective zip code area. This map is shown in Fig 1g. This frequency analysis, controlling for zip code size, 518 

visually pinpoints areas of high SF complaint density.  519 

5.7 Model Limitations 520 

     Previous urban flood research has employed the RF algorithm (Chen et al., 2020; Feng et al., 2015; Kim & Kim, 521 

2020; Lee et al., 2017; Sadler et al., 2018). Indeed, RF has been used explicitly in the evaluation of contributing 522 

factors for urban flooding. In Chen et al., RF methods were used in assessing explanatory variables, such as slope, 523 

land-use, rainfall, and altitude. However, the land-use category only distinguished between residential, water, 524 

grassland, farmland, and forest areas. Divergently, this study does not consolidate the feature class; yet, it seeks to 525 

understand the variations within. Thus, differences among the urban environment, such as building footprints and 526 

impervious cover, are explored. Moreover, this paper includes additional types of factors, such as catch basin 527 

clogging issues and population density. In another study, Sadler et al., RF is used to evaluate factor significance 528 

while also importing crowdsourced data. Similarly, this study applies citizen generated data; however, there is a 529 

greater number of variables incorporated. Sadler et al. includes environmental inputs, such as groundwater table 530 

level, tide, and wind; while this study considers topography, such as slope and elevation, in addition to 531 

infrastructural, land feature, and socio-demographical attributes.  532 
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     Overall, this study is novel in its approach of using the RF machine learning technique, in conjunction with 533 

citizen collaborated data, in its evaluation of an encompassing and diverse dataset of predictors. As a measure of 534 

model skill, R2 values are included. It is seen that when the number of predictors is minimized, R2 values increase. 535 

For instance, when SF serves as the response, and there is the narrowing from 141 to 15 predictors, the R2 increases 536 

to 0.63 from 0.58. Also noteworthy is that by adding CB to the top 15 predictors, with SF serving as the response, 537 

the R2 increases to 0.71 from 0.63. Therefore, the inclusion of the infrastructural component compliments the 538 

explanatory power. The model may have been limited by the quantity of SF reports. This has been shown in 539 

Agonafir et al., where the results of negative binomial generalized linear regression model had higher R2 values in 540 

zip codes with greater amounts of complaints. In addition, in the model where CB serves as the response (Model 3 541 

of Appendix C), the R2 is higher by 15 percentage points. This may have been due to a greater number of CB 542 

complaints being filed (85,607) as compared to SF complaints (25,574). Hence, as more crowdsourced data appears 543 

to reduce variability, increasing public awareness of the 311 platform may be a benefit to modeling endeavors. 544 

5.8 Overall Synthesis 545 

      A summary of results is presented in Table 3. It is seen that when catch basin reports are added as a predictor 546 

towards street flooding reports (Model 2), they comprise nearly half the overall percent importance (41.13%). 547 

Moreover, the considerable contribution of the socio-demographic variables suggest that the crowdsourced data may 548 

be biased towards certain backgrounds. On the other hand, the relative importance of the land feature, topographical, 549 

and physical characteristics illuminates the specific factors affecting NYC street spatial variability. Thus, the results 550 

of this study aid in the identification of important variables in NYC street flooding, in addition to providing a 551 

directive for weighting assignments, which may be useful in urban risk zones mapping and prediction models. 552 

     The predictors appearing in Table 1 are the highest of their respective categories. Of the land feature and 553 

topographic category, SLPE, ELEV, GREEN, CBPA, IMPV, BLD, FP and FBPD are evaluated, and only GREEN 554 

and CBPA are not amongst the top predictors in either model. In Model 1, the top land feature and topographical 555 

elements aggregate to 35.14%. However, in Model 2, once the CB variable is added, the sum of these features is 556 

only 24.91 %. Of the physical characteristics and population dynamics category, XCOR, YCOR, AREA, PPDN, and 557 

POP are the included variables in the prescreening, and only POP is not ranked in the top 15 of predictors. In Model 558 

1, the sum of the percent importance of the top physical characteristics and population dynamics factors is 26.15%. 559 
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Again, once CB is added in Model 2, the total importance of the variables decreases to 14.62%. Regarding the 560 

climatic category, seven variables are input for the prescreening analysis, NZMN, NZKT, NZSW, NZSD, PERC, 561 

MNWTS, and MXWTS; yet, for Model 1, and by consequence, Model 2, none of the precipitation parameters 562 

ranked in the top 15 of predictors. Lastly, when viewing the total listing socio-demographic variables (including 563 

those in the initial prescreen), it is seen that seven of the 121 variables appear as top predictors in either model. 564 

These variables include COM02, EMP06, RES04, MORT02, LANG02, HTEN02 and INC10. In Model 1, the 565 

variables total to 38.94%; then in Model 2, the total reduces to 19.44%, with the addition of the CB predictor. Thus, 566 

the RF models successfully signified factors from each of the input types within the study, of which influence the 567 

spatial variability of SF and CB reports within NYC zip codes. 568 

Key Predictors  

Model 1 

 

Model 2 Land Feature and Topographical 

BLD Number of 

buildings 

 

9.43% 

 

3.47% 

FP Sum of the building 

footprints 

 

6.10% 

 

3.43% 

SLPE Slope - mean 

percent rise 

 

7.61% 

 

6.73% 

ELEV Mean  

elevation 

 

5.10% 

 

2.12% 

IMPV Percent of 

impervious Cover 

 

3.68% 

 

4.37% 

FPBD Sum of the building 

footprints per unit 

area 

 

3.22% 

 

4.79% 

Physical Characteristics and Population 

Dynamics 

  

AREA Area   
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 8.62% 5.12% 

YCOR Centroid of y 

coordinate 

 

10.38% 

 

6.19% 

XCOR Centroid of x 

coordinate 

 

3.11% 

 

0.02% 

PPDN Population  

Density 

 

4.04% 

 

3.29% 

Socio-demographic   

COM02 COMMUTING TO 

WORK - Car, truck, 

or van -- drove 

alone 

 

17.79% 

 

6.56% 

EMP06 EMPLOYMENT 

STATUS - In labor 

force - Armed 

Forces 

 

6.58% 

 

4.53% 

RES04 RESIDENCE 1 

YEAR AGO - 

Population 1 year 

and over - Abroad 

 

3.32% 

 

3.44% 

MORT02 MORTGAGE 

STATUS - Owner-

occupied units - 

Housing units with 

a mortgage 

 

6.12% 

 

3.40% 

HTEN02 HOUSING 

TENURE - 

 

5.13% 

 

1.52% 
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Occupied housing 

units - Owner-

occupied 

Infrastructural   

CB Total catch basin 

complaints 

  

41.13% 

 569 

Table 7 A summary showing the complete listing of the top 15 predictors of all models. The percent importance 570 

values for Model 1 are the median values of 50 simulation runs for the top 15 predictors only. The percent 571 

importance values for Model 2 are the median values of 50 simulation runs for the 16 predictors. 572 

6 Conclusions 573 

 574 

     Urban flood research is presented with the complexities of the urban environment. The physical and social 575 

characteristics of a sprawling metropolitan are oftentimes dynamic - varying from one neighborhood to the next. 576 

This is especially evident in NYC, where diversity is prevalent. The land features range from high-rise buildings in 577 

impervious areas to residential neighborhoods with parks and ponds; the topography fluctuates from hilly and steep 578 

in some places to flat and low-lying in others; and, the people of NYC vary in background, income, and commuting 579 

style. As there are multiple factors influencing the behavior of runoff, a distinct feature of a neighborhood may have 580 

contribution, and thus, there is a need for analysis. Subsequently, a model with the ability to accommodate these 581 

intricacies is of value.  582 

     This paper implements the Random Forest machine learning algorithm to evaluate the spatial variability of NYC 583 

crowdsourced street flooding reports. A chief benefit of the model is the incorporation of a large dataset of land 584 

feature, topographical, physical and population, socio-demographic, locational and climatic variables to produce an 585 

output of predictor importance for each variable. The results of this study show that land feature characteristics, such 586 

as the number of buildings and building footprint area, affect the differences in street flood reporting per zip code. In 587 

addition, slope is a signified factor, and the location and the size of the zip code also influenced the frequency of 588 

street flood reporting. Furthermore, a major finding is that catch basin clogged reports, once added as a predictor, 589 
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has the highest relative importance. As such, improved street cleaning methods or increased inspections may be 590 

recommended. Moreover, this study is the first of its kind to evaluate the role of socio-demographics towards NYC 591 

311 street flooding and catch basin reporting behavior. With this analysis, it is found that the 311 street flooding data 592 

appears to be skewed by commuters who drive to work, rather than those who use alternative modes of 593 

transportation. Thus, methods of filtering bias may be needed when importing the citizen generated data in urban 594 

flood modeling. Overall, this paper presents the factors significant in the regional variations of NYC street flood 595 

reporting. 596 
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  801 

11 Appendix 802 

11.1 Appendix A 803 

Table A.1 A list of the Socio-demographic variables and respective abbreviations 804 

Abbreviatio

n 

Socio-demographic Variable 

CITZ01 U.S. CITIZENSHIP STATUS - Foreign-born population 

CITZ02 U.S. CITIZENSHIP STATUS - Foreign-born population - Naturalized U.S. citizen 

CITZ03 U.S. CITIZENSHIP STATUS - Foreign-born population - Not a U.S. citizen 

COM01 COMMUTING TO WORK - Workers 16 years and over 
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COM02 COMMUTING TO WORK - Workers 16 years and over - Car, truck, or van -- drove alone 

COM03 COMMUTING TO WORK - Workers 16 years and over - Car, truck, or van -- carpooled 

COM04 

COMMUTING TO WORK - Workers 16 years and over - Public transportation (excluding 

taxicab) 

COM05 COMMUTING TO WORK - Workers 16 years and over - Walked 

COM06 COMMUTING TO WORK - Workers 16 years and over - Other means 

COM07 COMMUTING TO WORK - Workers 16 years and over - Worked at home 

COM08 COMMUTING TO WORK - Workers 16 years and over - Mean travel time to work (minutes) 

EDU01 EDUCATIONAL ATTAINMENT - Population 25 years and over 

EDU02 EDUCATIONAL ATTAINMENT - Population 25 years and over - Less than 9th grade 

EDU03 EDUCATIONAL ATTAINMENT - Population 25 years and over - 9th to 12th grade, no diploma 

EDU04 

EDUCATIONAL ATTAINMENT - Population 25 years and over - High school graduate 

(includes equivalency) 

EDU05 EDUCATIONAL ATTAINMENT - Population 25 years and over - Some college, no degree 

EDU06 EDUCATIONAL ATTAINMENT - Population 25 years and over - Associate's degree 

EDU07 EDUCATIONAL ATTAINMENT - Population 25 years and over - Bachelor's degree 

EDU08 

EDUCATIONAL ATTAINMENT - Population 25 years and over - Graduate or professional 

degree 

EDU09 

EDUCATIONAL ATTAINMENT - Population 25 years and over - High school graduate or 

higher 

EDU10 EDUCATIONAL ATTAINMENT - Population 25 years and over - Bachelor's degree or higher 

EMP01 EMPLOYMENT STATUS - Population 16 years and over 

EMP02 EMPLOYMENT STATUS - Population 16 years and over - In labor force 

EMP03 EMPLOYMENT STATUS - Population 16 years and over - In labor force - Civilian labor force 

EMP04 

EMPLOYMENT STATUS - Population 16 years and over - In labor force - Civilian labor force – 

Employed 

EMP05 EMPLOYMENT STATUS - Population 16 years and over - In labor force - Civilian labor force - 
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Unemployed 

EMP06 EMPLOYMENT STATUS - Population 16 years and over - In labor force - Armed Forces 

EMP07 EMPLOYMENT STATUS - Population 16 years and over - Not in labor force 

EMP08 EMPLOYMENT STATUS - Civilian labor force 

FERT01 FERTILITY - Number of women 15 to 50 years old who had a birth in the past 12 months 

GEOID2 Zip Code ID 

HISL01 HISPANIC OR LATINO AND RACE - Total population 

HISL02 HISPANIC OR LATINO AND RACE - Total population - Hispanic or Latino (of any race) 

HISL03 HISPANIC OR LATINO AND RACE - Total population - Not Hispanic or Latino 

HISL04 HISPANIC OR LATINO AND RACE - Total population - Not Hispanic or Latino - White alone 

HISL05 

HISPANIC OR LATINO AND RACE - Total population - Not Hispanic or Latino - Black or 

African American alone 

HISL06 

HISPANIC OR LATINO AND RACE - Total population - Not Hispanic or Latino - American 

Indian and Alaska Native alone 

HISL07 HISPANIC OR LATINO AND RACE - Total population - Not Hispanic or Latino - Asian alone 

HISL08 

HISPANIC OR LATINO AND RACE - Total population - Not Hispanic or Latino - Native 

Hawaiian and Other Pacific Islander alone 

HISL09 

HISPANIC OR LATINO AND RACE - Total population - Not Hispanic or Latino - Some other 

race alone 

HISL10 

HISPANIC OR LATINO AND RACE - Total population - Not Hispanic or Latino - Two or more 

races 

HOC01 HOUSING OCCUPANCY - Total housing units 

HOC02 HOUSING OCCUPANCY - Total housing units - Occupied housing units 

HOC03 HOUSING OCCUPANCY - Total housing units - Vacant housing units 

HOC04 HOUSING OCCUPANCY - Total housing units - Homeowner vacancy rate 

HOC05 HOUSING OCCUPANCY - Total housing units - Rental vacancy rate 

HSHD01 HOUSEHOLDS BY TYPE - Total households 
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HSHD02 HOUSEHOLDS BY TYPE - Total households - Family households (families) 

HSHD03 

HOUSEHOLDS BY TYPE - Total households - Family households (families) - With own 

children of the householder under 18 years 

HSHD04 HOUSEHOLDS BY TYPE - Total households - Average household size 

HSHD05 HOUSEHOLDS BY TYPE - Total households - Average family size 

HTEN01 HOUSING TENURE - Occupied housing units 

HTEN02 HOUSING TENURE - Occupied housing units - Owner-occupied 

HTEN03 HOUSING TENURE - Occupied housing units - Renter-occupied 

HVAL01 VALUE - Owner-occupied units - Median (dollars) 

INC01 INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 

INC02 

INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 

- Less than $10,000 

INC03 

INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 

- $10,000 to $14,999 

INC04 

INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 

- $15,000 to $24,999 

INC05 

INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 

- $25,000 to $34,999 

INC06 

INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 

- $35,000 to $49,999 

INC07 

INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 

- $50,000 to $74,999 

INC08 

INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 

- $75,000 to $99,999 

INC09 

INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 

- $100,000 to $149,999 

INC10 INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 
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- $150,000 to $199,999 

INC11 

INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 

- $200,000 or more 

INC12 

INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 

- Median household income (dollars) 

INC13 

INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - Total households 

- Mean household income (dollars) 

LANG01 LANGUAGE SPOKEN AT HOME - Population 5 years and over 

LANG02 LANGUAGE SPOKEN AT HOME - Population 5 years and over - English only 

LANG03 LANGUAGE SPOKEN AT HOME - Population 5 years and over - Language other than English 

MORT01 MORTGAGE STATUS - Owner-occupied units 

MORT02 MORTGAGE STATUS - Owner-occupied units - Housing units with a mortgage 

MORT03 MORTGAGE STATUS - Owner-occupied units - Housing units without a mortgage 

RENT01 GROSS RENT - Occupied units paying rent 

RENT02 GROSS RENT - Occupied units paying rent - Less than $500 

RENT03 GROSS RENT - Occupied units paying rent - $500 to $999 

RENT04 GROSS RENT - Occupied units paying rent - $1,000 to $1,499 

RENT05 GROSS RENT - Occupied units paying rent - $1,500 to $1,999 

RENT06 GROSS RENT - Occupied units paying rent - $2,000 to $2,499 

RENT07 GROSS RENT - Occupied units paying rent - $2,500 to $2,999 

RENT08 GROSS RENT - Occupied units paying rent - $3,000 or more 

RENT09 GROSS RENT - Occupied units paying rent - Median (dollars) 

RENT10 GROSS RENT - Occupied units paying rent - No rent paid 

RES01 RESIDENCE 1 YEAR AGO - Population 1 year and over 

RES02 RESIDENCE 1 YEAR AGO - Population 1 year and over - Same house 

RES03 RESIDENCE 1 YEAR AGO - Population 1 year and over - Different house in the U.S. 

RES04 RESIDENCE 1 YEAR AGO - Population 1 year and over - Abroad 
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SCH01 SCHOOL ENROLLMENT - Population 3 years and over enrolled in school 

SCH02 

SCHOOL ENROLLMENT - Population 3 years and over enrolled in school - Nursery school, 

preschool 

SCH03 SCHOOL ENROLLMENT - Population 3 years and over enrolled in school - Kindergarten 

SCH04 

SCHOOL ENROLLMENT - Population 3 years and over enrolled in school - Elementary school 

(grades 1-8) 

SCH05 

SCHOOL ENROLLMENT - Population 3 years and over enrolled in school - High school 

(grades 9-12) 

SCH06 

SCHOOL ENROLLMENT - Population 3 years and over enrolled in school - College or graduate 

school 

SXAG01 SEX AND AGE - Total population 

SXAG02 SEX AND AGE - Total population - Male 

SXAG03 SEX AND AGE - Total population - Female 

SXAG04 SEX AND AGE - Total population - Under 5 years 

SXAG05 SEX AND AGE - Total population - 5 to 9 years 

SXAG06 SEX AND AGE - Total population - 10 to 14 years 

SXAG07 SEX AND AGE - Total population - 15 to 19 years 

SXAG08 SEX AND AGE - Total population - 20 to 24 years 

SXAG09 SEX AND AGE - Total population - 25 to 34 years 

SXAG10 SEX AND AGE - Total population - 35 to 44 years 

SXAG11 SEX AND AGE - Total population - 45 to 54 years 

SXAG12 SEX AND AGE - Total population - 55 to 59 years 

SXAG13 SEX AND AGE - Total population - 60 to 64 years 

SXAG14 SEX AND AGE - Total population - 65 to 74 years 

SXAG15 SEX AND AGE - Total population - 75 to 84 years 

SXAG16 SEX AND AGE - Total population - 85 years and over 

SXAG17 SEX AND AGE - Total population - Median age (years) 
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VOTE01 CITIZEN, VOTING AGE POPULATION - Citizen, 18 and over population 

RACE01 RACE - Total population 

RACE02 RACE - Total population - One race 

RACE03 RACE - Total population - One race – White 

RACE04 RACE - Total population - One race - Black or African American 

RACE05 RACE - Total population - One race - American Indian and Alaska Native 

RACE06 RACE - Total population - One race – Asian 

RACE07 RACE - Total population - One race - Native Hawaiian and Other Pacific Islander 

RACE08 RACE - Total population - One race - Some other race 

RACE09 RACE - Total population - Two or more races 

 805 

11.2 Appendix B 806 

Specifically, as provided by the Mathworks documentation (found at 807 

https://www.mathworks.com/help/stats/regressionbaggedensemble.oobpermutedpredictorimportance.html#bvf92si-808 

1), the model operates as follows: 809 

• For each tree, �, of the prediction trees: 810 

� = 1,… ,500 811 

• Splitting the indices of the predictor variables to grow � and identifying OOB: 812 

�	 ∈ {1,… , �} 813 

where, � is the number of explanatory variables. 814 

• The OOB error is estimated, �	. 815 

• For each explanatory variable �� , � ∈ �	: 816 

1. Observations of �� are randomly permuted. 817 

2. By the OOB containing the permuted values of ��, model error, �	� is estimated. 818 

3. The difference is taken: �	� = �	� − �	  819 
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• By the differences over the learners, � = 1,… , �, the mean, �� , and standard deviation, ��  for each 820 

explanatory variable are determined. 821 

• The impOOB for �� is calculated as 
��

��
. 822 

11.3 Appendix C 823 

Table C.1 provide the median relative importance ratio for each of the 141 variables in the Model 1 RF simulations, 824 

where SF serves as the response. Table C.2 provides the median relative importance ratio for each of the 141 825 

variables in the Model 3 RF simulations, where CB serves as the response. 826 

C.1 Results of the RF simulations with SF as the 
response 

C.2 Results of the RF simulations with CB as the 
response 

Variables  Importance Ratio Variables Importance Ratio 

COM02 0.0791 BLD 0.1243 

BLD 0.0442 COM02 0.0499 

YCOR 0.0397 FP 0.0419 

AREA 0.0388 AREA 0.0286 

FP 0.0320 MORT02 0.0268 

MORT02 0.0257 HTEN02 0.0256 

SLPE 0.0244 ELEV 0.0177 

EMP06 0.0219 LANG02 0.0174 

HTEN02 0.0206 YCOR 0.0167 

ELEV 0.0150 PPDN 0.0147 

RES04 0.0140 NZKT 0.0140 

PPDN 0.0129 NZSW 0.0138 

IMPV 0.0116 SLPE 0.0133 

FPBD 0.0110 NZMN 0.0132 

XCOR 0.0107 INC10 0.0119 

HSHD01 0.0105 XCOR 0.0117 

LANG02 0.0104 FPBD 0.0111 

NZKT 0.0098 HISL04 0.0090 

RACE08 0.0098 EDU05 0.0088 

COM08 0.0098 INC11 0.0084 

EDU05 0.0092 HSHD01 0.0081 

HISL03 0.0092 RACE06 0.0080 

SXAG12 0.0090 COM03 0.0080 

NZMN 0.0085 HISL07 0.0079 

LANG03 0.0085 RACE05 0.0078 

EDU06 0.0085 COM05 0.0078 

HISL02 0.0084 EDU04 0.0077 

RENT05 0.0083 RACE03 0.0076 

RACE09 0.0083 HISL09 0.0074 

COM03 0.0079 RENT05 0.0073 

EDU02 0.0079 RENT06 0.0072 

NZSW 0.0076 RES04 0.0072 

HTEN03 0.0074 MNWTS 0.0069 

HISL09 0.0074 LANG03 0.0068 

CITZ02 0.0074 EMP06 0.0068 

SXAG06 0.0073 HSHD02 0.0067 

RACE06 0.0073 IMPV 0.0066 
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HISL04 0.0073 HSHD04 0.0065 

EDU04 0.0072 CBPA 0.0064 

COM04 0.0072 EDU09 0.0064 

SXAG13 0.0072 HISL06 0.0063 

SXAG14 0.0069 INC12 0.0062 

EDU07 0.0069 INC07 0.0062 

CITZ03 0.0068 HSHD03 0.0061 

HSHD02 0.0068 COM08 0.0060 

RENT04 0.0064 SXAG14 0.0060 

SCH04 0.0064 SXAG13 0.0060 

RENT06 0.0063 SXAG12 0.0060 

SCH05 0.0063 RES03 0.0059 

RES03 0.0062 HISL03 0.0059 

INC07 0.0061 PERC 0.0059 

SXAG09 0.0061 INC05 0.0058 

GREEN 0.0061 HVAL01 0.0057 

CITZ01 0.0061 RENT04 0.0057 

RACE05 0.0059 CITZ03 0.0056 

HISL07 0.0059 RACE08 0.0055 

INC05 0.0058 INC13 0.0055 

PERC 0.0057 RENT07 0.0055 

EDU03 0.0057 EDU07 0.0054 

COM05 0.0056 HTEN03 0.0054 

INC03 0.0056 CITZ01 0.0053 

INC04 0.0056 INC03 0.0053 

RACE03 0.0055 COM04 0.0052 

SXAG02 0.0055 RENT08 0.0052 

INC11 0.0055 INC04 0.0052 

SXAG11 0.0054 INC09 0.0052 

COM06 0.0053 HSHD05 0.0051 

MNWTS 0.0053 SCH01 0.0050 

SXAG05 0.0053 INC02 0.0049 

INC10 0.0052 GREEN 0.0049 

EDU09 0.0051 SXAG09 0.0048 

HISL06 0.0050 SXAG05 0.0048 

SXAG15 0.0050 EMP07 0.0047 

POP 0.0049 EDU02 0.0046 

EMP07 0.0048 COM06 0.0046 

COM07 0.0048 HOC01 0.0046 

SXAG10 0.0047 MORT03 0.0046 

SXAG16 0.0047 VOTE01 0.0046 

EMP05 0.0047 FERT01 0.0044 

MORT03 0.0047 EDU01 0.0043 

INC12 0.0046 SXAG10 0.0043 

HOC01 0.0046 SCH04 0.0042 

EMP02 0.0045 SCH05 0.0042 

EDU10 0.0045 SXAG07 0.0042 

INC08 0.0045 SXAG06 0.0041 

RES02 0.0044 SXAG04 0.0041 

EMP04 0.0043 CITZ02 0.0041 

VOTE01 0.0043 RACE09 0.0041 

HVAL01 0.0043 RES01 0.0041 

SXAG03 0.0043 SXAG08 0.0040 
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RENT01 0.0042 SCH02 0.0040 

INC09 0.0041 EDU10 0.0040 

SCH02 0.0041 SXAG16 0.0039 

HSHD03 0.0040 NZSD 0.0039 

RACE02 0.0040 POP 0.0038 

EMP01 0.0040 RACE02 0.0038 

SXAG07 0.0039 COM01 0.0037 

SXAG04 0.0039 RENT01 0.0037 

EDU01 0.0039 INC08 0.0037 

INC06 0.0039 SXAG02 0.0036 

RENT08 0.0038 SXAG11 0.0036 

HISL10 0.0038 MORT01 0.0036 

SCH01 0.0038 SCH03 0.0034 

HISL05 0.0037 EMP02 0.0034 

SCH06 0.0037 SXAG03 0.0034 

COM01 0.0035 SXAG01 0.0033 

RENT10 0.0033 LANG01 0.0032 

CBPA 0.0033 EDU03 0.0032 

SXAG08 0.0031 RENT10 0.0031 

RENT03 0.0031 EMP05 0.0030 

LANG01 0.0031 EDU08 0.0030 

MXWTS 0.0028 EMP01 0.0030 

SCH03 0.0028 HOC05 0.0029 

RES01 0.0027 RENT03 0.0029 

RENT07 0.0027 RACE04 0.0029 

HSHD04 0.0026 RES02 0.0029 

HOC03 0.0025 EDU06 0.0028 

RENT02 0.0023 EMP04 0.0027 

NZSD 0.0019 INC01 0.0027 

RACE04 0.0017 INC06 0.0025 

INC02 0.0013 SXAG17 0.0025 

INC13 0.0012 SXAG15 0.0024 

SXAG17 0.0009 COM07 0.0024 

FERT01 0.0009 MXWTS 0.0024 

INC01 0.0007 HOC03 0.0024 

RENT09 0.0005 SCH06 0.0020 

HOC05 0.0003 RENT02 0.0018 

HSHD05 0.0003 HISL10 0.0018 

EDU08 0.0001 HISL02 0.0016 

EMP03 0.0000 RENT09 0.0005 

EMP08 0.0000 HISL05 0.0002 

EMP09 0.0000 EMP03 0.0000 

HOC02 0.0000 EMP08 0.0000 

HOC04 0.0000 EMP09 0.0000 

HTEN01 0.0000 HOC02 0.0000 

MORT01 0.0000 HOC04 0.0000 

SXAG01 0.0000 HTEN01 0.0000 

RACE01 0.0000 RACE01 0.0000 

RACE07 0.0000 RACE07 0.0000 

HISL01 0.0000 HISL01 0.0000 

HISL08 0.0000 HISL08 0.0000 

 827 
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11.3.1 Model 3: CB and Predictor Importance of the Land Features and Socio-828 

demographic Variables 829 

 830 

    The top 15 predictors are the following: BLD, COM02, FP, AREA, MORT02, HTEN02, ELEV, Language: 831 

English only (LANG02), YCOR, PPDN, NZKT, NZSW, SLPE, NZMN, and Income and Benefits: $150,000 to 832 

$199,999 (INC10). The median R2 is 0.74. Running 50 simulations of the top 15 predictors only, the median R2 is 833 

found to be 0.78. Box plots of the variables of each simulation are shown in Fig C.1 and listed in Table C.3. 834 

Abbreviation Variable Percent 

Importance 

BLD Number of buildings 23.20 

COM02 COMMUTING TO WORK - Workers 16 years and over - Car, truck, or van -- 

drove alone 

10.77 

FP Sum of the building footprints 9.60 

AREA Area 7.22 

MORT02 MORTGAGE STATUS - Owner-occupied units - Housing units with a mortgage 6.43 

ELEV Mean elevation 5.53 

HTEN02 HOUSING TENURE - Occupied housing units - Owner-occupied 5.15 

SLPE Slope - mean percent rise 4.84 

YCOR Centroid of y coordinate 4.56 

NZMN Mean of hourly precipitation (non-zero values) 4.47 

NZSW Skewness of hourly precipitation (non-zero values) 4.36 

PPDN Population Density 4.00 

NZKT Kurtosis of hourly precipitation (non-zero values) 3.71 

LANG02 LANGUAGE SPOKEN AT HOME - Population 5 years and over - English only 3.40 

INC10 INCOME AND BENEFITS (IN 2018 INFLATION-ADJUSTED DOLLARS) - 

Total households - $150,000 to $199,999 

2.82 

R2 is 0.78 
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Table C.3 The median R2 and relative importance values, resulting from 50 simulations of the RF regression for 835 

only the top 15 ranked predictors, with CB serving as the response variable (Model 3) 836 

 837 

Fig C Box plots of the 50 RF simulations of the top 15 ranked variables only, with CB serving as the response. 838 

These 15 variables explain up to 78% of the spatial variability (The R2 is 0.78). The expanded version of the 839 

acronyms is shown in Table C.1.   840 

     Of the top 15 predictors, five categories were socio-demographic. The COM02, MORT02, and HTEN02 were 841 

categories also found among the top predictors when SF served as the response. Then, there were also two new 842 

categories: Language and Income and Benefits. The Language Spoken at Home variable differentiates between 843 

those who speak only English in the home and those who do not. The Income and Benefits category discerns 844 

between the following annual incomes: less than $10,000, $10,000 to $14,999, $15,000 to $24,999, $25,000 to 845 

$34,999, $35,000 to $49,999, $50,000 to $74,999, $75,000 to $99,999, $100,000 to $149,999, $150,000 to 846 

$199,999, $200,000 or more. 847 

     By the visualization of the top predictor categories and corresponding variables, it is seen that Model 1 (street 848 

flooding reports as the response variable) and Model 3 (catch basin reports as the response variable) share similar 849 
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influences. Specifically, 10 of the top 15 predictors appear in both models. This may be expected, since street 850 

flooding reports and catch basin clogging reports occur during rain events; in addition, catch basin clogs have been 851 

shown to be a causal factor for street flooding. Thus, a location experiencing catch basin clogging may also be 852 

experiencing street flooding. 853 

11.4 Appendix D 854 

 855 

Fig D Scatter plots depicting the non-linear relationship of the CB and SF complaints on September 1, 2021, the day 856 

of the NYC urban flooding event by post tropical depression Ida. Each point represents a zip code, and the orange 857 

line represents the fitted regression line.  858 




